
ProtoGE: Prototype Goal Encodings for
Multi-goal Reinforcement Learning

Silviu Pitis*
University of Toronto, Vector Institute

Toronto, ON, Canada
spitis@cs.toronto.edu

Harris Chan*
University of Toronto, Vector Institute

Toronto, ON, Canada
hchan@cs.toronto.edu

Jimmy Ba
University of Toronto, Vector Institute

Toronto, ON, Canada
jba@cs.toronto.edu

Abstract

Current approaches to multi-goal reinforcement learning train the agent directly on the desired goal space. When goals
are sparse, binary and coarsely defined, with each goal representing a set of states, this has at least two downsides. First,
transitions between different goals may be sparse, making it difficult for the agent to obtain useful control signals, even
using Hindsight Experience Replay [1]. Second, having trained only on the desired goal representation, it is difficult to
transfer learning to other goal spaces.

We propose the following simple idea: instead of training on the desired coarse goal space, substitute it with a finer—more
specific—goal space, perhaps even the agent’s state space (the “state-goal” space), and use Prototype Goal Encodings
(“ProtoGE”) to encode coarse goals as fine ones. This has several advantages. First, an agent trained on an appropriately
fine goal space receives more descriptive control signals and can learn to accomplish goals in its desired goal space
significantly faster. Second, finer goal representations are more flexible and allow for efficient transfer. The state-goal
representation in particular, is universal: an agent trained on the state-goal space can potentially adapt to arbitrary goals,
so long as a Protoge map is available. We provide empirical evidence for the above claims and establish a new state-of-
the-art in standard multi-goal MuJoCo environments.

Keywords: multi-goal reinforcement learning, task specification, transfer
learning, hindsight experience replay

Paper # 155 352



1 Introduction, Background & Related Work

Humans can often accomplish specific goals more readily that general ones. Although more specific goals are, by def-
inition, more challenging to accomplish than more general goals, evidence from management and educational sciences
supports the idea that “specific, challenging goals lead to higher performance than easy goals” [9]. We find evidence of
this same effect for reinforcement learning (RL) agents in multi-goal environments. Our work establishes a new state-of-
the-art in standard multi-goal MuJoCo environments and suggests several novel research directions.

Fig. 1: In Push, the agent must push
the black box onto the red target.

Multi-Goal Reinforcement Learning We consider the multi-goal RL setting,
where an agent interacts with an environment and learns to accomplish differ-
ent goals. The problem is described by a generalized Markov Decision Process
(MDP) 〈S,A, T,G〉, where S, A, T , and G are the state space, action space, transi-
tion function and goal space, respectively [15, 16]. In the most general version of
this problem each goal is a tuple g = 〈Rg, γg〉, whereRg : S → R is a reward func-
tion and γg ∈ [0, 1] is a discount factor [16], so that “solving” goal g ∈ G amounts
to finding an optimal policy in the classical MDP 〈S,A, T,Rg, γg〉. We focus on
the sparse, binary reward case where each goal g corresponds to a set of “suc-
cess” states, S(g), with Rg : S → {−1, 0} and Rg(s) = 0 if and only if s ∈ S(g)
[13]. In this setting, the agent must learn to achieve and maintain success.

We use three multi-goal Fetch environments from OpenAIGym [3]: Push, PickAndPlace, and Slide (v0) [13]. In
Push and PickAndPlace, the agent must use its gripper to move a box to the desired location (Figure 1). In Slide,
the agent must hit a puck so it slides onto and stops in the desired location beyond the reach of the robot. A discount
factor of γ = 0.98 is used and the environments reset (a new goal is sampled) every 50 steps. Goals are specified by a
3-dimensional vector of x, y and z coordinates. The goal is satisfied and reward of 0 is obtained so long as the box or
puck is within an epsilon ball of the goal. An episode is a “success” only if the goal is satisfied on the final (50th) step.

Goal-Conditioned Actor-Critic Algorithms Many RL algorithms can be decomposed into actor (policy) and critic
(value function). The DQN algorithm, for discrete action spaces, parameterizes both a greedy actor and a critic using
the same deep neural network [10]. DDPG [7], the continuous action space equivalent of DQN, parameterizes actor and
critic separately. Both DQN and DDPG are off-policy algorithms and use a replay buffer to store past experiences; this
buffer is sampled from to train the actor and critic networks. To use DQN and DDPG in the multi-goal setting, we adopt
the standard approach, which generalizes the actors (critics) to be functions of not only the state s (and action a), but also
the goal g. A goal-conditioned critic is referred to as a GVF [16] or UVFA [14].

Hindsight Experience Replay An untrained agent acting in a sparse reward environment rarely achieves success,
which makes standard training of goal-conditioned actors and critics difficult. Hindsight Experience Replay (HER) [1]
accelerates learning by augmenting real experiences in the agent’s replay buffer with fake “potential” goals. The intuition
behind HER is that failures are informative: a failed attempt to reach g may have led to some other potential goal g′. By
pretending that g′ was the agent’s true goal, the agent can learn something useful even from failed attempts.

When applying HER, one must choose an appropriate sampling strategy for potential goals. The previous best strategy
was the future strategy, which chooses potential goals to correspond to future states visited along the same trajectory.
Since future requires us to map visited states to goals that would have been achieved in those states, we must assume
that “given a state s we can easily find a goal g which is satisfied in this state” [1]. Below, we propose a novel goal
sampling strategy futureactual, which results in state of the art performance when used together with Protoge.

2 Protoge

Desired goals in Fetch are completely specified by the object’s (box or puck) target location—the position of the gripper
is irrelevant, as are other state variables. Such goals are coarse, in that each goal corresponds to a large number of states.
Using a coarse goal specification during training has at least two downsides. First, as coarser goals have larger success
state sets, “achieving” a goal provides relatively less control signal. An untrained agent acting in Push, for example,
often fails to move the box at all. In this case, the future strategy samples only a single potential goal, which is satisfied
by all states in the trajectory, and little is learned. Second, it is difficult for an agent to transfer its learning to another
goal space: there is no natural way for a trained Push agent to transfer its knowledge in order to both (1) push the box
to location A, and then (2) move the gripper to location B.

To address these difficulties, we propose to train the agent on a finer—more specific—goal space and use Prototype Goal
Encodings (ProtoGE) to encode coarse goals as fine ones. Formally, we say that goal space A is coarser than goal space
B if and only if there exists Protoge map f : A → B such that for each goal a ∈ A, the success state set SB(f(a)) of its

1

Paper # 155 353



State	Space	S

0.5ϵ

SS

0.8ϵ1.0ϵ

State	Space	S

ϵ

ϵ

S S

ϵ

ϵ

ϵ

ϵ

Fig. 2: Concept diagrams of feature Protoges (left) and epsilon Protoges (right). Each frame represents a different goal space over the
same underlying state space, and the colored shapes inside represent success state sets for two example goals. On both the left and
right, the middle goal space is finer than the adjacent spaces, which are incomparable. The goals (squares, small circles) in the middle
spaces are valid Protoges for the corresponding goals (slices, large shapes) in the outer spaces.

Protoge, f(a), is a subset of a’s success state set SA(a). IfA is coarser thanB, B is finer thanA. If neither is coarser, A and
B are incomparable. Below, we consider two types of Protoges: feature Protoges, which expand the dimensionality of
the goal feature representation, and epsilon Protoges, which use tighter epsilon balls for determining goal achievement.
See Figure 2 for conceptual diagrams of each. Note that any topological basis of S is finer than any goal space whose
elements are open sets in S (an “open goal space”). In particular, if S ⊂ Rn, the standard basis of epsilon balls about each
state s ∈ S, Bε(s) = {x | ‖x − s‖ < ε} where ε ∈ R+, is finer than all open goal spaces. We call this the (ε-) state-goal
space. Finally, note that two goal spaces A and B can both be finer than the other (as are, e.g., any two topological bases).

For example, we replace the 3-dimensional goals in Push with 6-dimensional goals indicating not only a target box
position, but also a gripper position. Because any gripper position satisfies the original desired goal, we use a feature
Protoge and require that the agent place the gripper above the target box location. An agent must achieve the original
goal in order to achieve the Protoge. Using Protoges has at least two advantages, described below.

3 Accelerated Learning with Protoge

Although finer goals are, by definition, harder to accomplish than coarse ones, transitions between fine goals are less
sparse and provide the agent with more control signal. When the gripper position is added to the agent’s goal represen-
tation in the Push task, every movement achieves a new potential goal, even when the box remains unmoved, allowing
the agent to learn how to control the gripper when using HER’s future strategy. The intuition here is similar to that of
auxiliary tasks [6] and GVFs [16]: learning to control things—even if not directly connected to the agent’s primary goal—
results in better overall control and improved performance. Our results suggest that a balance between the additional
difficulty and control information introduced by specificity can accelerate learning.

Fetch Results We demonstrate accelerated learning in Push, PickAndPlace and Slide by (1) expanding the dimen-
sionality of the Push and PickAndPlace goal spaces using feature Protoges, and (2) increasing the specificity of the
Slide goal space using an epsilon Protoge. Test success is always measured with respect to the original goal space. See

0 2.5K 5K 7.5K 10K
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

FetchPush

HER (OBJ, f)
HER (OBJ, fa)
Protoge (ALL, f)
Protoge (ALL, fa)
Protoge (OBJGRIP, f)
Protoge (OBJGRIP, fa)

0 5K 10K 15K 20K
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

FetchPickAndPlace

HER (OBJ, f)
HER (OBJ, fa)
Protoge (ALL, f)
Protoge (ALL, fa)
Protoge (OBJGRIP, f)
Protoge (OBJGRIP, fa)

0 40K 80K 120K 160K
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

FetchSlide

HER (OBJ-0.05, f)
HER (OBJ-0.05, fa)
Protoge (OBJ-0.03, f)
Protoge (OBJ-0.03, fa)

Fig. 3: In Push and PickAndPlace, the standard goal representation OBJ is greatly outperformed by the finer OBJGRIP represen-
tation, which uses 6-dimensional Protoges. The ALL state-goal representation does not do as well as OBJGRIP, but is able to a learn
even when thresholds are hard-coded. In Slide, our epsilon Protoge (OBJ-0.03) approach outperforms the standard OBJ-0.05
approach. In all cases, the futureactual strategy (fa) performed better than the future strategy (f). When used together, Protoge
and futureactual establish a new state-of-the-art. Our results can be compared to the baselines of Plappert et al. (2018) [13] by
noting that our 10K episodes are roughly equal to 5 Plappert epochs. Our greatly improved baseline results are due to implementation
differences (see main text). For all environments, each configuration was run with the same 3 random seeds.

2

Paper # 155 354



Figure 3. In Push and PickAndPlace we experiment with a 6-dimensional object-gripper goal specification (OBJGRIP),
which reports both the box position and the gripper position, and a 25-dimensional state-goal specification (ALL), which
reports all 25-dimensions of the state. In each case we use a hand-coded Protoge map to encode desired goals into the
expanded goal space. The Protoge places the hand above the box, and encodes the other dimensions (e.g., speed and ob-
ject rotation) in the state-goal case to have a value of 0. We use the same epsilon threshold as the original environments
with respect to the original goal dimensions (thus, the expanded goal space is finer than the original goal space, and
achieving an expanded goal necessarily achieves the original goal), and use an element-wise epsilon threshold for added
dimensions, which we manually set to 0.05. In Slide we experiment with a tighter goal specification, which reduces
the distance threshold for goal satisfaction from 0.05 to 0.03 (meters). We plan to experiment with automatically learning
optimal thresholds in future work. We expect that learned thresholds will greatly improve performance, especially that
of the state-goal representation (ALL).

A Novel HER Strategy As a result of the increase in goal specificity, the agent’s state rarely satisfies the Protoge of
any potential desired goal (e.g., the agent’s gripper is rarely directly above the box); as such, when using the future
strategy, very few desired goal Protoges are added to the agent’s replay buffer. To combat this effect, we propose the
futureactual strategy, which mixes goals sampled according to future with goals sampled from a buffer of past
actual goals (in the agent’s goal space; i.e., using Protoge). This focuses the agent’s learning effort on actual desired goals
while still providing the agent with enough initial reward signal to benefit from HER. In our experiments we always
sample 80% of the agent’s training experiments using HER, with 40% sampled according to future and 40% sampled
according to actual. Although Protoge still works with future, we find that futureactual improves performance,
even in absence of Protoge (Figure 3).

Implementation Highlights We use DDPG together with our own implementation of HER. Rather than distribute
training across parallel workers (as done by Plappert et al. [13]), we train a single agent in 12 parallel environments. Our
actors and critics use 3 layer-normalized [2] hidden layers of 512 units each. We train with a batch size of 1000 every two
environment steps, and update our target network every 40 training steps using an update factor of 0.05. We apply L2

action normalization with coefficient 0.1. Our Push and PickAndPlace agents use epsilon exploration with an epsilon
of 0.3, whereas our Slide agent does not use any epsilon exploration. Other hyperparameters are similar to those used
by Plappert et al. [13]. Our baseline future agents learn significantly faster than the agents of Plappert et al., as well as
the more recent agents of Liu et al [8], most likely due to the different training regime.

4 Transfer Learning with Protoge

0 5K 10K 15K 20K
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

FetchPushAndReach

HER (from scratch)
Transferred Protoge (ALL)
Transferred Protoge (OBJGRIP)

Fig. 4: Transferred Protoge agents, trained on Push,
solve PushAndReach faster than an agent trained
from scratch (5 random seeds each).

Finer goal representations are more flexible and allow for efficient
transfer. The state-goal representation in particular, is universal:
an agent trained on the state-goal space can potentially adapt to
arbitrary goals, regardless of their form, so long as Protoges are
available. This effectively reverses the HER assumption: instead
of assuming that given state s we can find a goal g that is satis-
fied in s [1], we assume that given goal g we can find a state s
that satisfies g. Our present work demonstrates transferability us-
ing hand-designed Protoge maps, but we are working towards an
effective method for learning Protoges maps online.

In Figure 4, we show that both the OBJGRIP and ALL agents
from the previous Section can effectively transfer their knowl-
edge to a PushAndReach environment, which has 6-dimensional
goals and requires the agent to both (1) push the box to a 3-
dimensional target location and (2) move its gripper to another
3-dimensional target location. The target locations are indepen-
dently sampled (the box goal is sampled according to the same dis-
tribution as Push, and the gripper goal is sampled roughly accord-
ing to the same distribution as the FetchReach environment).
Since PushAndReach is harder than Push, we see that the stan-
dard HER approach learns slightly slower than it does in Push.
The transferred agents are able to learn much faster, even though the distribution of desired goals has changed signifi-
cantly. Note that while the transferred OBJGRIP agent is now using the native goal space (no Protoge), the transferred
ALL agent is using a Protoge map, as before, to expand the native 6-dimensional goal into a 25-dimensional goal.

3

Paper # 155 355



5 Future Work

This work is still in its early stages, and we are exploring several avenues going forward:

• In our Fetch experiments, we use a hard-coded element-wise success threshold for expanded goal dimensions.
Can we learn these thresholds automatically? We are currently exploring a curriculum learning approach [5].

• In particular, many aspects of the state space are usually outside of the agent’s control, and it is unreasonable
to ask an agent to achieve arbitrary goals in the state-goal space. How can we automatically recognize control-
lable aspects of the state and use only those when defining Protoges? One promising approach is to learn a
“controllable” latent space by predicting inverse dynamics f(at|st, st+1) [12].

• In our Fetch experiments, we use the native feature space to define goals and Protoges. How can we generalize
this approach to the agent’s latent feature space?

• More generally, we may wish to learn Protoge maps between two complex goal spaces (recall that two goal
spaces can both be finer than the other). For example, we might want to map the natural language goal space
[4], describing the task that the agent needs to perform, to raw pixels (an image) showing the agent’s first person
view [11], or vice versa. How can we learn such maps automatically?

• For a given coarse goal, there are many candidate Protoges, any of which satisfy the original goal. It would be
interesting explore the generation of optimal Protoges, conditioned on the current state and goal.

• In our experiments, we used the original Push goal space to generate Protoges in order to train the ALL agent,
which agent was able to quickly transfer its knowledge to PushAndReach. It seems likely, however, that the ALL
agent could have designed its own goal curriculum, separately from Push, and trained itself in an unsupervised
fashion by taking advantage of, e.g., curiousity [12].

References

[1] ANDRYCHOWICZ, M., WOLSKI, F., RAY, A., SCHNEIDER, J., FONG, R., WELINDER, P., MCGREW, B., TOBIN, J., ABBEEL, O. P.,
AND ZAREMBA, W. Hindsight experience replay. In Advances in Neural Information Processing Systems (2017), pp. 5048–5058.

[2] BA, J. L., KIROS, J. R., AND HINTON, G. E. Layer normalization. arXiv preprint arXiv:1607.06450 (2016).
[3] BROCKMAN, G., CHEUNG, V., PETTERSSON, L., SCHNEIDER, J., SCHULMAN, J., TANG, J., AND ZAREMBA, W. Openai gym,

2016.
[4] CHAN, H., WU, Y., KIROS, J., FIDLER, S., AND BA, J. Actrce: Augmenting experience via teacher’s advice for multi-goal

reinforcement learning. arXiv preprint arXiv:1902.04546 (2019).
[5] EPPE, M., MAGG, S., AND WERMTER, S. Curriculum goal masking for continuous deep reinforcement learning. arXiv preprint

arXiv:1809.06146 (2018).
[6] JADERBERG, M., MNIH, V., CZARNECKI, W. M., SCHAUL, T., LEIBO, J. Z., SILVER, D., AND KAVUKCUOGLU, K. Reinforcement

learning with unsupervised auxiliary tasks. arXiv preprint arXiv:1611.05397 (2016).
[7] LILLICRAP, T. P., HUNT, J. J., PRITZEL, A., HEESS, N., EREZ, T., TASSA, Y., SILVER, D., AND WIERSTRA, D. Continuous control

with deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015).
[8] LIU, H., TROTT, A., SOCHER, R., AND XIONG, C. Competitive experience replay. In International Conference on Learning Repre-

sentations (2019).
[9] LOCKE, E. A., SHAW, K. N., SAARI, L. M., AND LATHAM, G. P. Goal setting and task performance: 1969–1980. Psychological

bulletin 90, 1 (1981), 125.
[10] MNIH, V., KAVUKCUOGLU, K., SILVER, D., GRAVES, A., ANTONOGLOU, I., WIERSTRA, D., AND RIEDMILLER, M. Playing atari

with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).
[11] NAIR, A. V., PONG, V., DALAL, M., BAHL, S., LIN, S., AND LEVINE, S. Visual reinforcement learning with imagined goals. In

Advances in Neural Information Processing Systems (2018), pp. 9209–9220.
[12] PATHAK, D., AGRAWAL, P., EFROS, A. A., AND DARRELL, T. Curiosity-driven exploration by self-supervised prediction. In

ICML (2017).
[13] PLAPPERT, M., ANDRYCHOWICZ, M., RAY, A., MCGREW, B., BAKER, B., POWELL, G., SCHNEIDER, J., TOBIN, J., CHOCIEJ, M.,

WELINDER, P., ET AL. Multi-goal reinforcement learning: Challenging robotics environments and request for research. arXiv
preprint arXiv:1802.09464 (2018).

[14] SCHAUL, T., HORGAN, D., GREGOR, K., AND SILVER, D. Universal value function approximators. In International Conference on
Machine Learning (2015), pp. 1312–1320.

[15] SUTTON, R. S., AND BARTO, A. G. Reinforcement learning: An introduction. MIT press, 2018.
[16] SUTTON, R. S., MODAYIL, J., DELP, M., DEGRIS, T., PILARSKI, P. M., WHITE, A., AND PRECUP, D. Horde: A scalable real-

time architecture for learning knowledge from unsupervised sensorimotor interaction. In The 10th International Conference on
Autonomous Agents and Multiagent Systems-Volume 2 (2011), pp. 761–768.

4

Paper # 155 356


